
Hansel Documentation
Release 0.0.5a

Sam Nicholls

Apr 17, 2018

Contents

1 Hansel 3
1.1 What is it? . 3
1.2 Requirements . 3
1.3 Install . 3
1.4 Citation . 3
1.5 License . 4

2 About 5
2.1 What is it for? . 5
2.2 How is data stored? . 5
2.3 How does it work? . 5

3 Usage 7
3.1 Adding Observations . 7
3.2 Get Observation Counts . 8
3.3 Summarise Counts at Position . 8
3.4 Marginal Distribution . 8
3.5 Conditional Distribution . 8
3.6 Get Spanning Support . 9
3.7 Get Edge Weights . 9
3.8 Reweight Observations . 9

4 History 11
4.1 0.0.7 . 11
4.2 0.0.6 . 11
4.3 0.0.5 . 11
4.4 0.0.4 . 11
4.5 0.0.3 . 12
4.6 0.0.2 . 12
4.7 0.0.1 . 12

5 Indices and tables 13

i

ii

Hansel Documentation, Release 0.0.5a

A graph-inspired data structure for determining likely chains of sequences from breadcrumbs of evidence. Brother to
Gretel.

Contents 1

http://gretel.readthedocs.io/en/latest/

Hansel Documentation, Release 0.0.5a

2 Contents

CHAPTER 1

Hansel

A graph-inspired data structure for determining likely chains of ordered symbols from breadcrumbs of evidence.
Brother to Gretel.

1.1 What is it?

Hansel is a probabilistically-weighted, graph-inspired, novel data structure. Hansel is designed to store the number of
observed occurrences of a symbol a appearing at some position in space or time i, co-occurring with another symbol
b at another position in space or time j.

One may traverse along ordered positions in time or space, each time predicting the next most likely symbol of the
sequence to traverse to, given the previously selected symbols in the path. Hansel presents a user-friendly API for
managing and interacting with the data stored within.

1.2 Requirements

pip install numpy

1.3 Install

pip install hanselx

1.4 Citation

Paper pending. . .

3

https://github.com/SamStudio8/gretel

Hansel Documentation, Release 0.0.5a

1.5 License

Hansel and Gretel are distributed under the MIT license, see LICENSE.

4 Chapter 1. Hansel

CHAPTER 2

About

2.1 What is it for?

Hansel was originally created as a means to store evidence of genetic variation observed across short sequences called
reads. These reads can be aligned against one another to create longer sequences (contigs). Of interest, are the
locations at which reads that overlap exhibit variation from other reads.

We want to recover the chains of symbols (DNA nucleotides) that are most likely to appear from the start to the end
of the contig, over the genomic positions that have been demonstrated to vary.

We recognised that Hansel had additional potential outside of our use-case, not only to serve as a data structure for
creation of future algorithms that want to interact with variation of DNA, but also in other fields entirely, such as
computational linguistics.

Hansel can be used where you have a defined set of possible states or symbols that occur in time or space. For
example:

• DNA, RNA or amino acids, over a sequence

• Words in order, from a book, or page

• States that occur in a simple ordered machine or system

• User or actor actions that occur over time

2.2 How is data stored?

Hansel is a four dimensional matrix. An element H[a, b, i, j] record the number of observations of a co-occurring pair
of symbols a and b at positions i and j respectively. At first this structure may appear limited, but the data in H can
easily be exploited to build other structures.

2.3 How does it work?

5

Hansel Documentation, Release 0.0.5a

Fig. 2.1: Three corresponding representations, (a) a set of short ordered sequences, with symbols, (b) the actual Hansel
structure where each possible pair of symbols (00, 01, 10, 11) has a matrix storing counts of occurrences of that ordered
symbol pair between two positions across all of the aligned sequences in a, (c) a simple graph that can be constructed
by considering the evidence provided by adjacent variant symbols. Note this representation ignores evidence from
non-adjacent pairs, which is overcome by the dynamic edge weighting of the Hansel data structure’s interface.

6 Chapter 2. About

CHAPTER 3

Usage

3.1 Adding Observations

3.1.1 Simple

To construct and add observations to a Hansel data structure:

from hansel import Hansel
import numpy as np

symbols = ['A', 'C', 'G', 'T', '_']
unsymbols = ['_']
positions = [1, 3, 5, 7, 9]
L = 10 # Defines the 'lookback'

Get some memory and pass it to the Hansel constructor
a = np.ndarray((

len(symbols), len(symbols), len(positions)+2, len(positions)+2)
)
hansel = Hansel(a, symbols, unsymbols, L=L)

Add some observations
hansel.add_observation(a, b, i, j)
...

3.1.2 Not so Simple

For very large data sets, or complicated parallel high-throughput methodologies, you may need to bypass the API for
adding observations by reserving and populating the relevant memory yourself:

import ctypes
import numpy as np

7

Hansel Documentation, Release 0.0.5a

from hansel import Hansel

symbols = ['A', 'C', 'G', 'T', '_']
unsymbols = ['_']
positions = [1, 3, 5, 7, 9]
L = 10 # Defines the 'lookback'

Get some memory
h = np.frombuffer(Array(ctypes.c_float,

(len(symbols)**2) * ((len(positions)+2)**2),
lock=False),

dtype=ctypes.c_float)

Shape the memory into a numpy array of the desired size
h = hansel.reshape(len(symbols), len(symbols), len(positions)+2, len(positions)+2)
h.fill(0.0)

Add some observations
def __symbol_num(symbol):

symbols_d = {symbol: i for i, symbol in enumerate(symbols)}
return symbols_d[symbol]

h[__symbol_num(a), __symbol_num(b), i, j] += 1
...

Feed the prefilled array to the Hansel constructor
hansel = Hansel(h, symbols, unsymbols, L=L)

3.2 Get Observation Counts

To find the number of times symbol a at position i has been seen with symbol b at position j:

hansel.get_observation(a, b, i, j)

3.3 Summarise Counts at Position

To fetch a dictionary of the raw counts for each symbol at a given position:

hansel.get_counts_at(at_position)

3.4 Marginal Distribution

To find the log10 probability of a particular symbol appearing at a given position:

hansel.get_marginal_of_at(interesting_symbol, at_position)

3.5 Conditional Distribution

To find the log10 probability of a at i appearing with b and j:

8 Chapter 3. Usage

Hansel Documentation, Release 0.0.5a

hansel.get_conditional_of_at(a, b, i, j)

3.6 Get Spanning Support

Get the number of times a symbol or state b appears at position j, on pieces of evidence that also covered space or time
point i:

hansel.get_spanning_support(b, i, j)

3.7 Get Edge Weights

Given a sequence of symbols selected during traversal thus far, find the log10 probabilities of traversing to the available
symbols at your next position j:

hansel.get_edge_weights_at(j, current_path)

3.8 Reweight Observations

Reduce the element that support the observation of a at i and b at j co-occurring on the same piece of evidence together:

hansel.reweight_observation(a, b, i, j, ratio)

The original observation count is multiplied by the ratio, the result is then subtracted from the current value. It is
recommended that ratio not be too large without good confidence. Aggressive reweighting can lead to spending
(removing) the evidence in the Hansel matrix before your algorithm has had time to explore the paths properly.

3.6. Get Spanning Support 9

Hansel Documentation, Release 0.0.5a

10 Chapter 3. Usage

CHAPTER 4

History

4.1 0.0.7

• Documentation

4.2 0.0.6

• Switch to dictionaries and sets generated at construction time to speed up the lookup of symbols

4.3 0.0.5

• Introduce unsymbols to cover cases where you would like to count observations from some a to an “invalid” b
during marginal calculation, but still prevent the actual selection of the invalid b as a transition choice

• Member list unsymbols keeps track of symbols who should have no weighting when counting observations or
calculating marginals.

• Allow a user to construct Hansel with an argument for the lookback order.

• Alter get_spanning_support and get_counts_at to not count observations that originate from an ignored unsym-
bol and transition to a real symbol. This alteration makes things work even if you’ve been a silly and filled
Hansel with more crummy data than usual, hooray.

• Dramatically improve performance by using the correct ndarray indexing syntax [A, B, i, j] vs. [A][B][i][j]

4.4 0.0.4

• Add some documentation.

11

Hansel Documentation, Release 0.0.5a

• Rename get_marginal_at to get_counts_at. As the function returns raw counts, not a marginal distribution, this
is a less misleading name.

• Don’t return the unused curr_branches_tot value from get_edge_weights_at.

• Remove select_next_edge_at, we need not concern ourselves with problem specific end-user behaviour. We just
provide an API to the pseudo-graph.

4.5 0.0.3

• Add observations property for those who may find crumbs confusing or odd.

• Remove domain specific language (“SNP”, “mallele”) in favour of “symbol”.

• Require symbol list on constuction, prevent empty list with casting/template.

• Ensure to catch an in-progress __new__ in __array_finalize__

4.6 0.0.2

• Abstract BAM specific loading to gretel.

• Rename reads attribute to slices (of bread)

• Add sources property for those who may find slices confusing or bizarre.

4.7 0.0.1

• Import repository from claw.

12 Chapter 4. History

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

	Hansel
	What is it?
	Requirements
	Install
	Citation
	License

	About
	What is it for?
	How is data stored?
	How does it work?

	Usage
	Adding Observations
	Get Observation Counts
	Summarise Counts at Position
	Marginal Distribution
	Conditional Distribution
	Get Spanning Support
	Get Edge Weights
	Reweight Observations

	History
	0.0.7
	0.0.6
	0.0.5
	0.0.4
	0.0.3
	0.0.2
	0.0.1

	Indices and tables

